Журнал юриста

Сообщение на тему кремний. Химия кремния и его соединения

Кремний (лат. silicium), si, химический элемент iv группы периодической системы Менделеева; атомный номер 14, атомная масса 28,086. В природе элемент представлен тремя стабильными изотопами: 28 si (92,27%), 29 si (4,68%) и 30 si (3,05%).

Историческая справка . Соединения К., широко распространённые на земле, были известны человеку с каменного века. Использование каменных орудий для труда и охоты продолжалось несколько тысячелетий. Применение соединений К., связанное с их переработкой, - изготовление стекла - началось около 3000 лет до н. э. (в Древнем Египте). Раньше других известное соединение К. - двуокись sio 2 (кремнезём). В 18 в. кремнезём считали простым телом и относили к «землям» (что и отражено в его названии). Сложность состава кремнезёма установил И. Я. Берцелиус. Он же впервые, в 1825, получил элементарный К. из фтористого кремния sif 4 , восстанавливая последний металлическим калием. Новому элементу было дано название «силиций» (от лат. silex - кремень). Русское название ввёл Г. И. Гесс в 1834.

Распространённость в природе . По распространённости в земной коре К. - второй (после кислорода) элемент, его среднее содержание в литосфере 29,5% (по массе). В земной коре К. играет такую же первостепенную роль, как углерод в животном и растительном мире. Для геохимии К. важна исключительно прочная связь его с кислородом. Около 12% литосферы составляет кремнезём sio 2 в форме минерала кварца и его разновидностей. 75% литосферы слагают различные силикаты и алюмосиликаты (полевые шпаты, слюды, амфиболы и т. д.). Общее число минералов, содержащих кремнезём, превышает 400.

При магматических процессах происходит слабая дифференциация К.: он накапливается как в гранитоидах (32,3%), так и в ультраосновных породах (19%). При высоких температурах и большом давлении растворимость sio 2 повышается. Возможна его миграция и с водяным паром, поэтому для пегматитов гидротермальных жил характерны значительные концентрации кварца, с которым нередко связаны и рудные элементы (золото-кварцевые, кварцево-касситеритовые и др. жилы).

Физические и химические свойства. К. образует тёмно-серые с металлическим блеском кристаллы, имеющие кубическую гранецентрированную решётку типа алмаза с периодом а = 5,431 a , плотностью 2,33 г/см 3 . При очень высоких давлениях получена новая (по-видимому, гексагональная) модификация с плотностью 2,55 г/см 3 . К. плавится при 1417°С, кипит при 2600°С. Удельная теплоёмкость (при 20-100°С) 800 дж/ (кг? К), или 0,191 кал/ (г? град) ; теплопроводность даже для самых чистых образцов не постоянна и находится в пределах (25°С) 84-126 вт/ (м? К), или 0,20-0,30 кал/ (см? сек? град) . Температурный коэффициент линейного расширения 2,33 ? 10 -6 К -1 ; ниже 120k становится отрицательным. К. прозрачен для длинноволновых ИК-лучей; показатель преломления (для l =6 мкм) 3,42; диэлектрическая проницаемость 11,7. К. диамагнитен, атомная магнитная восприимчивость -0,13 ? 10 -6 . Твёрдость К. по Моосу 7,0, по Бринеллю 2,4 Гн/м 2 (240 кгс/мм 2) , модуль упругости 109 Гн/м 2 (10890 кгс/мм 2) , коэффициент сжимаемости 0,325 ? 10 -6 см 2 /кг. К. хрупкий материал; заметная пластическая деформация начинается при температуре выше 800°С.

К. - полупроводник, находящий всё большее применение. Электрические свойства К. очень сильно зависят от примесей. Собственное удельное объёмное электросопротивление К. при комнатной температуре принимается равным 2,3 ? 10 3 ом ? м (2,3 ? 10 5 ом ? см ) .

Полупроводниковый К. с проводимостью р -типа (добавки В, al, in или ga) и n -типа (добавки Р, bi, as или sb) имеет значительно меньшее сопротивление. Ширина запрещенной зоны по электрическим измерениям составляет 1,21 эв при 0 К и снижается до 1,119 эв при 300 К .

В соответствии с положением К. в периодической системе Менделеева 14 электронов атома К. распределены по трём оболочкам: в первой (от ядра) 2 электрона, во второй 8, в третьей (валентной) 4; конфигурация электронной оболочки 1s 2 2s 2 2p 6 3s 2 3p 2 . Последовательные потенциалы ионизации (эв ): 8,149; 16,34; 33,46 и 45,13. Атомный радиус 1,33 a , ковалентный радиус 1,17 a , ионные радиусы si 4+ 0,39 a , si 4- 1,98 a .

В соединениях К. (аналогично углероду) 4-валентен. Однако, в отличие от углерода, К. наряду с координационым числом 4 проявляет координационное число 6, что объясняется большим объёмом его атома (примером таких соединений являются кремнефториды, содержащие группу 2-).

Химическая связь атома К. с другими атомами осуществляется обычно за счёт гибридных sp 3 -орбиталей, но возможно также вовлечение двух из его пяти (вакантных) 3 d- орбиталей, особенно когда К. является шестикоординационным. Обладая малой величиной электроотрицательности, равной 1,8 (против 2,5 у углерода; 3,0 у азота и т. д.), К. в соединениях с неметаллами электроположителен, и эти соединения носят полярный характер. Большая энергия связи с кислородом si-o, равная 464 кдж/моль (111 ккал/моль ) , обусловливает стойкость его кислородных соединений (sio 2 и силикатов). Энергия связи si-si мала, 176 кдж/моль (42 ккал/моль ) ; в отличие от углерода, для К. не характерно образование длинных цепей и двойной связи между атомами si. На воздухе К. благодаря образованию защитной окисной плёнки устойчив даже при повышенных температурах. В кислороде окисляется начиная с 400°С, образуя кремния двуокись sio 2 . Известна также моноокись sio, устойчивая при высоких температурах в виде газа; в результате резкого охлаждения может быть получен твёрдый продукт, легко разлагающийся на тонкую смесь si и sio 2 . К. устойчив к кислотам и растворяется только в смеси азотной и фтористоводородной кислот; легко растворяется в горячих растворах щелочей с выделением водорода. К. реагирует с фтором при комнатной температуре, с остальными галогенами - при нагревании с образованием соединений общей формулы six 4. Водород непосредственно не реагирует с К., и кремневодороды (силаны) получают разложением силицидов (см. ниже). Известны кремневодороды от sih 4 до si 8 h 18 (по составу аналогичны предельным углеводородам). К. образует 2 группы кислородсодержащих силанов - силоксаны и силоксены. С азотом К. реагирует при температуре выше 1000°С. Важное практическое значение имеет нитрид si 3 n 4 , не окисляющийся на воздухе даже при 1200°С, стойкий по отношению к кислотам (кроме азотной) и щелочам, а также к расплавленным металлам и шлакам, что делает его ценным материалом для химической промышленности, для производства огнеупоров и др. Высокой твёрдостью, а также термической и химической стойкостью отличаются соединения К. с углеродом (кремния карбид sic) и с бором (sib 3 , sib 6 , sib 12). При нагревании К. реагирует (в присутствии металлических катализаторов, например меди) с хлорорганическими соединениями (например, с ch 3 cl) с образованием органогалосиланов [например, si (ch 3) 3 ci], служащих для синтеза многочисленных кремнийорганических соединений.

К. образует соединения почти со всеми металлами - силициды (не обнаружены соединения только с bi, tl, pb, hg). Получено более 250 силицидов, состав которых (mesi, mesi 2 , me 5 si 3 , me 3 si, me 2 si и др.) обычно не отвечает классическим валентностям. Силициды отличаются тугоплавкостью и твёрдостью; наибольшее практическое значение имеют ферросилиций и силицид молибдена mosi 2 (нагреватели электропечей, лопатки газовых турбин и т. д.).

Получение и применение. К. технической чистоты (95-98%) получают в электрической дуге восстановлением кремнезёма sio 2 между графитовыми электродами. В связи с развитием полупроводниковой техники разработаны методы получения чистого и особо чистого К. Это требует предварительного синтеза чистейших исходных соединений К., из которых К. извлекают путём восстановления или термического разложения.

Чистый полупроводниковый К. получают в двух видах: поликристаллический (восстановлением sici 4 или sihcl 3 цинком или водородом, термическим разложением sil 4 и sih 4) и монокристаллический (бестигельной зонной плавкой и «вытягиванием» монокристалла из расплавленного К. - метод Чохральского).

Специально легированный К. широко применяется как материал для изготовления полупроводниковых приборов (транзисторы, термисторы, силовые выпрямители тока, управляемые диоды - тиристоры; солнечные фотоэлементы, используемые в космических кораблях, и т. д.). Поскольку К. прозрачен для лучей с длиной волны от 1 до 9 мкм, его применяют в инфракрасной оптике.

К. имеет разнообразные и всё расширяющиеся области применения. В металлургии К. используется для удаления растворённого в расплавленных металлах кислорода (раскисления). К. является составной частью большого числа сплавов железа и цветных металлов. Обычно К. придаёт сплавам повышенную устойчивость к коррозии, улучшает их литейные свойства и повышает механическую прочность; однако при большем его содержании К. может вызвать хрупкость. Наибольшее значение имеют железные, медные и алюминиевые сплавы, содержащие К. Всё большее количество К. идёт на синтез кремнийорганических соединений и силицидов. Кремнезём и многие силикаты (глины, полевые шпаты, слюды, тальки и т. д.) перерабатываются стекольной, цементной, керамической, электротехнической и др. отраслями промышленности.

В. П. Барзаковский.

Кремний в организме находится в виде различных соединений, участвующих главным образом в образовании твёрдых скелетных частей и тканей. Особенно много К. могут накапливать некоторые морские растения (например, диатомовые водоросли) и животные (например, кремнероговые губки, радиолярии), образующие при отмирании на дне океана мощные отложения двуокиси кремния. В холодных морях и озёрах преобладают биогенные илы, обогащенные К., в тропических морях - известковые илы с низким содержанием К. Среди наземных растений много К. накапливают злаки, осоки, пальмы, хвощи. У позвоночных животных содержание двуокиси кремния в зольных веществах 0,1-0,5%. В наибольших количествах К. обнаружен в плотной соединительной ткани, почках, поджелудочной железе. В суточном рационе человека содержится до 1 г К. При высоком содержании в воздухе пыли двуокиси кремния она попадает в лёгкие человека и вызывает заболевание - силикоз.

В. В. Ковальский.

Лит.: Бережной А. С., Кремний и его бинарные системы. К., 1958; Красюк Б. А., Грибов А. И., Полупроводники - германий и кремний, М., 1961; Реньян В. Р., Технология полупроводникового кремния, пер. с англ., М., 1969; Салли И. В., Фалькевич Э. С., Производство полупроводникового кремния, М., 1970; Кремний и германий. Сб. ст., под ред. Э. С. Фалькевича, Д. И. Левинзона, в. 1-2, М., 1969-70; Гладышевский Е. И., Кристаллохимия силицидов и германидов, М., 1971; wolf Н. f., silicon semiconductor data, oxf. - n. y., 1965.

cкачать реферат

- характеристика элемента кремния: электронное строение, возможные степени окисления, основные соединения: оксид, гидроксид. Аморфный и кристаллический кремний.

Кремний – элемент 3-го периода и IVA-группы Периодической системы, порядковый номер 14. Электронная формула атома 1s 2 2s 2 2p 6 3s 2 3p 2 = [ 10 Ne]3s 2 3p 2 . Характерная степень окисления в соединениях +IV.

Шкала степеней окисления кремния:

Электроотрицательность кремния невысока для неметаллов (2,25). Проявляет неметаллические (кислотные) свойства; образует оксиды, кремниевые кислоты, очень большое число солей – силикатов в виде цепей, лент и трехмерных сеток тетраэдров , бинарные соединения. В настоящее время широко развивается химия органических соединений кремния со связями Si – С и кремнийорганических полимеров – силиконов и силиконовых каучуков со связями Si – Si, Si – О и Si – С.

Важнейший элемент неживой природы, второй по химической распространенности. Встречается только в связанном виде. Жизненно важный элемент для многих организмов.

Кремний Si – Простое вещество. Крупнокристаллический – темно-серый, с металлическим блеском, весьма твердый, очень хрупкий, непрозрачный, тугоплавкий, распространенный полупроводник. Кристаллическая решетка – атомная, связи Si – Si очень прочные. Аморфный – белый или желто-коричневый (с примесями, в основном Fe), химически более активен. Устойчив на воздухе (покрыт прочной оксидной пленкой), не реагирует с водой. Реагирует с HF (конц.), щелочами. Окисляется кислородом, хлором. Восстанавливается магнием. Спекается с графитом. Промышленно важным является сплав с железом – ферросилиций (12–90 % Si). Применяется как легирующая добавка в стали и сплавы цветных металлов, компонент полупроводниковых материалов для микроэлектроники, основа силиконов.

Уравнения важнейших реакций:

Получение в промышленности: восстановление SiCl 4 или SiO 2 при прокаливании:

SiCl 4 + 2Zn = Si + 2ZnCl 2

SiO 2 + 2Mg = Si + 2MgO

(последняя реакция может быть осуществлена и в лаборатории, после обработки соляной кислотой остается аморфный кремний).

Диоксид кремния SiO 2 – Кислотный оксид. Белый порошок (кварцевый песок) и прозрачные кристаллы, природный продукт окрашен примесями (кремнезём) – в виде обычного песка и камня(кремень). Кристаллическая решетка атомная, каждый атом кремния окружен четырьмя атомами кислорода , а каждый атом кислорода – двумя атомами кремния . Имеет несколько кристаллических модификаций (все минералы), важнейшие - кварц, тридимити кристобалит, редко встречающиеся и искусственно полученные - китит, коэсит, стишовит, меланофлогит, волокнистый кремнезём.Тугоплавкий , при медленном охлаждении расплава образуется аморфная форма – кварцевое стекло (в природе минерал лешательеит). Наиболее химически активна аморфная форма.


Практически не реагирует с водой (из раствора осаждается гидрат SiO 2 nН 2 O), распространенными кислотами. Кварцевое стекло разъедается в HF (конц.). Реагирует со щелочами в растворе (образуетортосиликаты) и при сплавлении (продукты - метасиликаты). Легко хлорируется в присутствии кокса. Восстанавливается коксом, магнием, железом (в доменном процессе).

Применяется как промышленное сырье в производстве кремния, обычного, термо– и химически стойкого стекла,

фарфора, керамики, абразивов и адсорбентов, наполнитель резины, смазок, клеев и красок, компонент строительных связующих растворов, в виде монокристаллов кварца – основа генераторов ультразвука и точного хода кварцевых часов. Разновидности кварца (горный хрусталь, розовый кварц, аметист, дымчатый кварц, халцедон, оникси др.) – драгоценные, полудрагоценные или поделочные камни.

Уравнения важнейших реакций:

Полигидрат диоксида кремнияSiO 2 nH 2 O – Кремниевые кислоты с переменным содержанием SiO 2 и Н 2 O. Белый, аморфный (стекловидный) полимер с цепочечным, ленточным, листовым, сетчатым и каркасным строением. При нагревании постепенно разлагается. Очень мало растворим в воде. Над осадком в растворе существует мономерная слабая ортокремниевая кислота H 4 SiO 4 (тетраэдрическое строение, sр 3 -гибридизация), растворимость 0,00673 г/100 г Н 2 O при 20 °C. При стоянии раствора идет поликонденсация и медленно образуются вначале кремниевые кислоты H 6 Si 2 O 7 , H 2 Si 2 O 5 , H 10 Si 2 O 9 , затем гидрозоль n (золь метакремниевой кислоты) и, наконец, гидрогель SiO 2 nН 2 O (n < 2). При высушивании гидрогель переходит в силикагель SiO 2 nН 2 O (n < 1). Скорость гелеобразования максимальна в слабокислотной среде.

Переводится в раствор действием концентрированных щелочей. По остальным химическим свойствам подобен SiO 2 . В природе – минералы опал и халцедон (агат, яшма). Мономерная метакремниевая кислота H 2 SiO 3 не получена.

Уравнения важнейших реакций:

Получение : вытеснение сильной кислотой из раствора силиката, например:

K 2 SiO 3 + 2НCl + (n – 1) Н 2 O = 2КCl + SiO 2 nН 2 O

Метасиликат натрияNa 2 SiO 3 – Оксосоль. Белый, при нагревании плавится без разложения. Растворяется в холодной воде (сильный гидролиз по аниону). Концентрированный раствор – коллоидный («жидкое стекло», содержит гидрозоль SiO 2 nН 2 O). Разлагается в горячей воде, реагирует с кислотами, щелочами, углекислым газом.

Применяется как компонент шихты в производстве стекла, специальных цементов и бетонов, входит в состав силикатных красок и клея, холодных глазурей, алюмосиликатных катализаторов, при изготовлении бумаги и картона, силикагеля, синтетических цеолитов. Уравнения важнейших реакций:

Получение : сплавление соды с песком

Na 2 SiO 3 + SiO 2 = СO 2 + Na 2 SiO 3 (1150 °C)

Силикаты. Кремний в степени окисления +IV находится, помимо SiO 2 , в весьма многочисленных и часто очень сложных по составу и строению силикат-ионах (так, кроме жетасиликат-иона SiO 3 2- иортосиликат-иона SiO 4 4- известны ионы Si 2 O 7 6- , Si 3 O 9 6- , Si 2 O 10 4- и др.). Для простоты записи все силикаты изображают как содержащие ион SiO 3 2- .

Насыщенный раствор силикатов натрия и калия (вязкое «жидкое стекло») используется как силикатный клей.

Силикаты натрия и кальция входят в состав стекла; его получают сплавлением кварца SiO 2 , известняка СаСO 3 и соды Na 2 CO 3:

Часто состав стекла выражают через оксиды, например, обычное стекло Na 2 O СаО 6SiO 2 .

Среди силикатных минералов отметим глины (алюмосиликаты ), очень чистая глина - каолин Al 2 O 3 2SiO 2 2Н 2 O используется для изготовления фарфора.

Силикаты и алюмосиликаты применяют в промышленности при производстве керамики, цемента, бетона и других строительных материалов.

Тетрахлорид кремнияSiCl 4 . Бинарное соединение. Бесцветная жидкость, обладает широким интервалом жидкого состояния. Молекула имеет тетраэдрическое строение (sр 3 -гибридизация). Термически устойчив. «Дымит» во влажном воздухе. Полностью гидролизуется водой. Разлагается щелочами. Восстанавливается водородом, натрием, цинком. Хлорирует оксид алюминия.

Применяется в производстве особо чистого кремния для полупроводниковой техники.

Уравнения важнейших реакций:

Получение в промышленности – хлорирование кремния или кварцевого песка SiO 2 .

Кристаллический кремний - это основная форма, в которой используется кремний при производстве фотоэлектрических преобразователей и твердотельных электронных приборов методами планарной технологии. Активно развивается использование кремния в виде тонких плёнок (эпитаксиальных слоёв) кристаллической и аморфной структуры на различных подложках.

Кремний открыл и получил в 1823 году шведский химик Йенс Якоб Берцелиус.

Второй по распространённости элемент в земной коре после кислорода (27,6% по массе). Встречается в соединениях.

Строениеатома кремния в основном состоянии

1s 2 2s 2 2p 6 3s 2 3p 2


Строение атома кремния в возбуждённомсостоянии

1s 2 2s 2 2p 6 3s 1 3p 3

Степени окисления: +4, -4.

Аллотропия кремния

Известен аморфный и кристаллический кремний.


Поликристаллический кремний

Кристаллический – тёмно-серое вещество с металлическим блеском, большая твёрдость, хрупок, полупроводник; ρ = 2,33 г/см 3 , t°пл. =1415°C; t°кип. = 2680°C.

Имеет алмазоподобную структуру и образует прочные ковалентные связи. Инертен.

Аморфный - бурый порошок, гигроскопичен, алмазоподобная структура, ρ = 2 г/см 3 , более реакционноспособен.

Получение кремния

1) Промышленность – нагревание угля с песком:

2C + SiO 2 t ˚ → Si + 2CO

2) Лаборатория – нагревание песка с магнием :

2Mg + SiO 2 t ˚ → Si + 2MgO Опыт

Химические свойства

Типичный неметалл, инертен.

Как восстановитель:

1) С кислородом

Si 0 + O 2 t ˚ → Si +4 O 2

2) С фтором (без нагревания)

Si 0 + 2F 2 →SiF 4 ­

3) С углеродом

Si 0 + C t ˚ → Si +4 C

(SiC - карборунд - твёрдый; используется для точки и шлифовки)

4) С водородом не взаимодействует.

Силан (SiH 4) получают разложением силицидов металлов кислотой:

Mg 2 Si + 2H 2 SO 4 → SiH 4 ­ + 2MgSO 4

5) С кислотами не реагирует олько с плавиковой кислотой Si +4 HF = SiF 4 +2 H 2 )

Растворяется только в смеси азотной и плавиковой кислот:

3Si + 4HNO 3 + 18HF →3H 2 + 4NO­ + 8H 2 O

6) Со щелочами (при нагревании):

Как окислитель:

7) С металлами (образуются силициды):

Si 0 + 2Mg t ˚ →Mg 2 Si -4

Кремний широко используется в электронике как полупроводник. Добавки кремния к сплавам повышают их коррозионную стойкость. Силикаты, алюмосиликаты и кремнезем – основное сырье для производства стекла и керамики, а также для строительной промышленности.
Кремний в технике
Применение кремния и его соединений

Силан - SiH 4

Физические свойства: Бесцветный газ, ядовит, t°пл. = -185°C, t°кип. = -112°C.

Получение кремниевой кислоты

Действие сильных кислот на силикаты - Na 2 SiO 3 + 2HCl → 2NaCl + H 2 SiO 3 ↓

Химические свойства:

При нагревании разлагается: H 2 SiO 3 t ˚ → H 2 O + SiO 2

Соли кремниевой кислоты - силикаты .

1) с кислотами

Na 2 SiO 3 +H 2 O+CO 2 =Na 2 CO 3 +H 2 SiO 3


2) с солями

Na 2 SiO 3 +CaCl 2 =2NaCl+CaSiO 3 ↓

3) Силикаты, входящие в состав минералов, в природных условиях разрушаются под действием воды и оксида углерода (IV) - выветривание горных пород:

(K 2 O Al 2 O 3 6SiO 2)(полевой шпат) + CO 2 + 2H 2 O → (Al 2 O 3 2SiO 2 2H 2 O)(каолинит (глина)) + 4SiO 2 (кремнезём (песок)) + K 2 CO 3


Применение соединений кремния



Природные соединения кремния - песок (SiO 2) и силикаты используются для производства керамики, стекла и цемента.


Керамика

Фарфор = каолин+ глина + кварц + полевой шпат. Родина фарфора – Китай, где фарфор известен уже в 220г. В 1746 г – налажено производство фарфора в России

Фаянс - от названия итальянского города Фаэнца. Где в 14-15веках было развито керамическое ремесленничество. Фаянс – отличается от фарфора большим содержанием глины (85%), более низкой температурой обжига.

После кислорода кремний является самым распространенным элементом в земной коре. Он имеет 2 устойчивых изотопа: 28 Si , 29 Si , 30 Si . В свободном виде кремний в природе не встречается.

Наиболее часто встречающиеся: соли кремниевых кислот и оксид кремний (кремнезем, песок, кварц). Они входят в состав минеральных солей, слюды, талька, асбеста.

Аллотропия кремния.

У кремния есть 2 аллотропные модификации:

Кристаллическая (светло-серые кристаллы. Структура подобна кристаллической решетке алмаза, где атом кремния ковалентно связан с 4 одинаковыми атомами , а сам находится в sp 3 - гибридизации);

Аморфная (порошок бурого цвета, более активная форма чем кристаллическая).

Свойства кремния.

При температуре кремний реагируют с кислородом воздуха:

Si + O 2 = SiO 2 .

Если кислорода не хватает (недостаток), то может иметь место такая реакция:

2 Si + O 2 = 2 SiO ,

Где SiO - монооксид, который также может образовываться при реакции:

Si + SiO 2 = 2 SiO .

В нормальных условиях кремний может реагировать с F 2 , при нагревании - с Cl 2 . Если повышать температуру дальше, то Si будет способен провзаимодействовать с N и S :

4Si + S 8 = 4SiS 2 ;

Si + 2F 2 = SiF 4 .

Кремний способен реагировать с углеродом , давая карборунд :

Si + C = SiC .

Кремний растворим в смеси концентрированной азотной и фтороводородной кислот:

3Si + 4HNO 3 + 12HF = 3SiF 4 + 4NO + 8H 2 O.

Кремний растворяется в водных растворах щелочей:

Si + 2NaOH + H 2 O = Na 2 SiO 3 + H 2 .

При нагревании с оксидами кремний диспропорционирует:

2 MgO + 3 Si = Mg 2 Si + 2 SiO .

При взаимодействии с металлами, кремний выступает в качестве окислителя:

2 Mg + Si = Mg 2 Si .

Применение кремния.

Наибольшее применение кремний находит в производстве сплавов для придания прочности алюминию, меди и магнию и для получения ферросилицидов, имеющих важное значение в производстве сталей и полупроводниковой техники. Кристаллы кремния применяют в солнечных батареях и полупроводниковых устройствах - транзисторах и диодах.

Кремний служит также сырьем для производства кремнийорганических соединений, или силоксанов, получаемых в виде масел, смазок, пластмасс и синтетических каучуков. Неорганические соединения кремния используют в технологии керамики и стекла, как изоляционный материал и пьезокристаллы.

Химический знак кремния Si, атомный вес 28,086, заряд ядра +14. , как и , располагается в главной подгруппе IV группы, в третьем периоде. Это аналог углерода. Электронная конфигурация электронных слоев атома кремния ls 2 2s 2 2p 6 3s 2 3p 2 . Строение внешнего электронного слоя

Структура внешнего электронного слоя аналогична структуре атома углерода.
встречается в виде двух аллотропных видоизменений - аморфного и кристаллического.
Аморфный - порошок буроватого цвета, обладающий несколько большей химической активностью, чем кристаллический. При обычной температуре реагирует с фтором:
Si + 2F2 = SiF4 при 400° - с кислородом
Si + O2 = SiO2
в расплавах - с металлами:
2Mg + Si = Mg2Si
Кристаллический кремний - твердое хрупкое вещество с металлическим блеском. Он обладает хорошей тепло- и электропроводностью, легко растворяется в расплавленных металлах, образуя . Сплав кремния с алюминием называется силумином, сплав кремния с железом - ферросилицием. Плотность кремния 2,4. Температура плавления 1415°, температура кипения 2360°. Кристаллический кремний - вещество довольно инертное и в химические реакции вступает с трудом. С кислотами, несмотря на хорошо заметные металлические свойства, кремний не реагирует, а со щелочами вступает в реакцию, образуя соли кремниевой кислоты и :
Si + 2КОН + Н2О = K2SiO2 + 2H2

■ 36. В чем сходство и в чем различие электронных структур атомов кремния и углерода?
37. Как объяснить с точки зрения электронной структуры атома кремния, почему металлические свойства более характерны для кремния, чем для углерода?
38. Перечислите химические свойства кремния.

Кремний в природе. Двуокись кремния

В природе кремний распространен очень широко. Примерно 25% земной коры приходится на кремний. Значительная часть природного кремния представлена двуокисью кремния SiO2. В очень чистом кристаллическом состоянии двуокись кремния встречается в виде минерала, называемого горным хрусталем. Двуокись кремния и двуокись углерода по химическому составу являются аналогами, однако двуокись углерода - это газ, а двуокись кремния - твердое вещество. В отличие от молекулярной кристаллической решетки СO2 двуокись кремния SiO2 кристаллизуется в виде атомной кристаллической решетки, каждая ячейка которой представляет собой тетраэдр с атомом кремния в центре и атомами кислорода по углам. Это объясняется тем, что атом кремния имеет больший радиус, чем атом углерода, и вокруг него могут разместиться не 2, а 4 кислородных атома. Различием в строении кристаллической решетки объясняется различие свойств этих веществ. На рис. 69 показаны внешний вид кристалла природного кварца, состоящего из чистой двуокиси кремния, и ее структурная формула.

Рис. 60. Структурная формула двуокиси кремния (а) и кристаллы природного кварца (б)

Кристаллическая двуокись кремния наиболее часто встречается в виде песка, который имеет белый цвет, если не загрязнен глинистыми примесями желтого цвета. Помимо песка, двуокись кремния часто встречается в виде очень твердого минерала - кремния (гидратированная двуокись кремния). Кристаллическая двуокись кремния, окрашенная в различные примеси, образует драгоценные и полудрагоценные камни - агат, аметист, яшму. Почти чистая двуокись кремния встречается также в виде кварца и кварцита. Свободной двуокиси кремния в земной коре 12%, в составе различных горных пород - около 43%. В общей сложности более 50% земной коры состоит из двуокиси кремния.
Кремний входит в состав самых различных горных пород и минералов - глины, гранитов, сиенитов, слюд, полевых шпатов и пр.

Твердая двуокись углерода, не плавясь, возгоняется при -78,5°. Температура плавления двуокиси кремния около 1.713°. Она весьма тугоплавка. Плотность 2,65. Коэффициент расширения двуокиси кремния очень мал. Это имеет очень большое значение при применении посуды из кварцевого стекла. В воде двуокись кремния не растворяется и с ней не реагирует, несмотря на , что это кислотный окисел и ему соответствует кремниевая кислота H2SiO3. Двуокись углерода в воде, как известно, растворима. С кислотами, кроме плавиковой кислоты HF, двуокись кремния не реагирует, со щелочами дает соли.

Рис. 69. Структурная формула двуокиси кремния (а) и кристаллы природного кварца (б).
При накаливании двуокиси кремния с углем происходит восстановление кремния, а затем его соединение с углеродом и образование карборунда по уравнению:
SiO2 + 2С = SiC + СО2. Карборунд обладает высокой твердостью, к кислотам устойчив, а щелочами разрушается.

■ 39. По каким свойствам двуокиси кремния можно судить о ее кристаллической решетке?
40. В виде каких минералов двуокись кремния встречается в природе?
41. Что такое карборунд?

Кремниевая кислота. Силикаты

Кремниевая кислота H2SiO3 является кислотой очень слабой и малоустойчивой. При нагревании она постепенно разлагается на воду и двуокись кремния:
H2SiO3 = H2O + SiO2

В воде кремниевая кислота практически нерастворима, но может легко давать .
Кремниевая кислота образует соли, которые называются силикатами. широко встречаются в природе. Природные - это довольно сложные . Состав их обычно изображается как соединение нескольких окислов. Если в состав природных силикатов входит окись алюминия, они называются алюмосиликатами. Таковы белая глина, (каолин) Al2O3 · 2SiO2 · 2H2O, полевой шпат К2O · Al2O3 · 6SiO2, слюда
К2O · Al2O3 · 6SiO2 · 2Н2O. Многие природные в чистом виде являются драгоценными камнями, например аквамарин, изумруд и др.
Из искусственных силикатов следует отметить силикат натрия Na2SiO3 - один из немногих растворимых в воде силикатов. Его называют растворимым стеклом, а раствор - жидким стеклом.

Силикаты широко применяются в технике. Растворимым стеклом пропитывают ткани и древесину для предохранения их от воспламенения. Жидкое входит в состав огнеупорных замазок для склеивания стекла, фарфора, камня. Силикаты и являются основой в производстве стекла, фарфора, фаянса, цемента, бетона, кирпича и различных керамических изделий. В растворе силикаты легко гидролизуются.

■ 42. Что такое ? Чем они отличаются от силикатов?
43. Что такое жидкое и для каких целей оно применяется?

Стекло

Сырьем для производства стекла являются сода Na2CO3, известняк СаСO3 и песок SiO2. Все составные части стеклянной шихты тщательно очищают, смешивают и сплавляют при температуре около 1400°. В процессе сплавления протекают следующие реакции:
Na2CO3 + SiO2= Na2SiO3 + CO2

CaCO3 + SiO2 = CaSiO 3+ CO2
Фактически в состав стекла входят силикаты натрия и кальция, а также избыток SO2, поэтому состав обычного оконного стекла: Na2O · CaO · 6SiO2. Стеклянную шихту нагревают при температуре 1500° до тех пор, пока полностью не удалится двуокись углерода. Затем охлаждают до температуры 1200°, при которой оно становится вязким. Как всякое аморфное вещество, стекло размягчается и затвердевает постепенно, поэтому оно является хорошим пластическим материалом. Вязкую стеклянную массу пропускают через щель, в результате чего образуется стеклянный лист. Горячий стеклянный лист вытягивают валками, доводя до определенных размеров и постепенно охлаждая током воздуха. Затем его обрезают по краям и разрезают на листы определенного формата.

■ 44. Приведите уравнения реакций, протекающих при получении стекла, и состав оконного стекла.

Стекло - вещество аморфное, прозрачное, в воде практически нерастворимо, но если измельчить его в мелкую пыль и смешать с небольшим количеством воды, в полученной смеси с помощью фенолфталеина можно обнаружить щелочь. При длительном хранении щелочей в стеклянной посуде избыток SiO2 в стекле очень медленно реагирует со щелочью и стекло постепенно утрачивает прозрачность.
Стекло стало известно людям более чем за 3000 лет до нашей эры. В древности получали стекла почти такого же состава, как и в настоящее время, но древние мастера руководствовались лишь собственной интуицией. В 1750 г. М. В. сумел разработать научные основы получения стекла. За 4 года М. В. собрал много рецептов изготовления разных стекол, особенно цветных. На построенной им стекольной фабрике было изготовлено большое количество образцов стекла, которые сохранились до наших дней. В настоящее время используются стекла разного состава, обладающие различными свойствами.

Кварцевое стекло состоит из почти чистой двуокиси кремния и выплавляется из горного хрусталя. Его очень важной особенностью является , что коэффициент расширения у него незначительный, почти в 15 раз меньше, чем у обычного стекла. Посуду из такого стекла можно раскалить докрасна в пламени горелки и после этого опустить в холодную воду; при этом никаких изменений со стеклом не произойдет. Кварцевое стекло не задерживает ультрафиолетовых лучей, а если окрасить его никелевыми солями в черный цвет, то оно будет задерживать все видимые лучи спектра, но для ультрафиолетовых лучей останется прозрачным.
На кварцевое стекло не действуют кислоты и , но щелочи его заметно разъедают. Кварцевое стекло более хрупко, чем обычное. Лабораторное стекло содержит около 70% SiО2, 9% Na2О, 5% К2О 8% СаО, 5% Аl2O3, 3% В2O3 (состав стекол приводится не для запоминания).

В промышленности находят применение стекла иен-ское и пирекс. Иенское стекло содержит около 65% Si02, 15% В2O3, 12% ВаО, 4% ZnO, 4% Аl2O3. Оно прочно, устойчиво к механическим воздействиям, имеет малый коэффициент расширения, устойчиво к щелочам.
Стекло пирекс содержит 81% SiO2, 12% В2O3, 4% Na2O, 2% Аl2O3, 0,5% As2O3, 0,2% К2O, 0,3% СаО. Оно обладает такими же свойствами, как иенское стекло, но в еще большей степени, особенно после закалки, зато менее устойчиво к щелочам. Из стекла пирекс изготовляют предметы домашнего обихода, подвергающиеся нагреванию, а также детали некоторых промышленных установок, работающие при низких и высоких температурах.

Разные качества стеклу придают некоторые добавки. Например, примеси окислов ванадия дают стекло, полностью задерживающее ультрафиолетовые лучи.
Получают также и стекло, окрашенное в различные цвета. Еще М. В. изготовил несколько тысяч образцов цветного стекла разной окраски и оттенков для своих мозаичных картин. В настоящее время методы окраски стекла детально разработаны. Соединения марганца окрашивают стекло в фиолетовый цвет, кобальта - в синий. , распыленное в массе стекла в виде коллоидных частиц, придает ему рубиновую окраску и т. д. Свинцовые соединения придают стеклу блеск, подобный блеску горного хрусталя, поэтому оно называется хрустальным. Такое стекло легко поддается обработке, огранке. Изделия из него очень красиво преломляют свет. При окраске этого стекла различными добавками получается цветное хрустальное стекло.

Если расплавленное стекло смешать с веществами, которые при разложении образуют большое количество газов, то последние, выделяясь, вспенивают стекло, образуя пеностекло. Такое стекло очень легкое, хорошо обрабатывается, является прекрасным электро- и тепло-изолятором. Оно было впервые получено проф. И. И. Китайгородским.
Вытягивая из стекла нити, можно получить так называемое стекловолокно. Если пропитать уложенное слоями стекловолокно синтетическими смолами, то получается очень прочный, не поддающийся гниению, прекрасно обрабатывающийся строительный материал, так называемый стеклотекстолит. Интересно, что чем тоньше стекловолокно, тем выше его прочность. Стекловолокно также применяется для изготовления спецодежды.
Стеклянная вата является ценным материалом, через который можно фильтровать сильные кислоты и щелочи, не фильтрующиеся через бумагу. Кроме того, стеклянная вата является хорошим теплоизолирующим веществом.

■ 44. От чего зависят свойства стекол разных видов?

Керамика

Из алюмосиликатов особенно важна белая глина - каолин, являющаяся основой для получения фарфора и фаянса. Производство фарфора - чрезвычайно древняя отрасль хозяйства. Родина фарфора - Китай. В России фарфор был получен впервые в XVIIIв. Д, И. Виноградовым.
Сырьем для получения фарфора и фаянса, помимо каолина, служат песок и . Смесь каолина, песка и воды подвергают тщательному тонкому размолу в шаровых мельницах, затем отфильтровывают избыток воды и хорошо вымешанную пластичную массу направляют на формовку изделий. После формовки изделия подвергают сушке и обжигу в туннельных печах непрерывного действия, где их сначала разогревают, затем обжигают и, наконец, охлаждают. После этого изделия проходят дальнейшую обработку - покрытие глазурью, нанесение рисунка керамическими красками. После каждой стадии изделия обжигают. В результате фарфор получается белым, гладким и блестящим. В тонких слоях он просвечивает. Фаянс порист и не просвечивает.

Из красной глины формуют кирпичи, черепицу, глиняную посуду, керамические кольца для насадки в поглотительных и промывных башнях разных химических производств, цветочные горшки. Их также обжигают, чтобы они не размягчались водой, стали механически прочными.

Цемент. Бетон

Соединения кремния служат основой для получения цемента - вяжущего материала, незаменимого в строительстве. Сырьем для получения цемента являются глина и известняк. Эту смесь обжигают в огромной наклонной трубчатой вращающейся печи, куда непрерывно загружают сырье. После обжига при 1200-1300° из отверстия, расположенного на другом конце печи, непрерывно выходит спекшаяся масса - клинкер. После размола клинкер превращается в . В состав цемента входят главным образом силикаты. Если смешать с водой до образования густой кашицы, а затем оставить на некоторое время на воздухе, то вступит в реакцию с веществами цемента, образуя кристаллогидраты и другие твердые соединения, что приводит к затвердеванию («схватыванию») цемента. Такой уже не переводится в прежнее состояние, поэтому до употребления цемент стараются беречь от воды. Процесс твердения цемента является длительным, и настоящую прочность он приобретает лишь через месяц. Правда, существуют разные сорта цемента. Рассмотренный нами обычный цемент называется силикатным, или портландцементом. Из глинозема, известняка и двуокиси кремния изготовляют быстро твердеющий глиноземистый цемент.

Если смешать цемент со щебнем или гравием, то получается бетон, являющийся уже самостоятельным строительным материалом. Щебень и гравий называются наполнителями. Бетон обладает высокой прочностью и выдерживает большие нагрузки. Он водостоек, огнестоек. При нагревании почти не теряет прочности, так как теплопроводность его очень мала. Бетон морозостоек, ослабляет радиоактивные излучения, поэтому его используют как строительный материал для гидротехнических сооружений, для защитных оболочек ядерных реакторов. Бетоном обмуровывают котлы. Если смешать цемент с пенообразователем, то образуется пронизанный множеством ячеек пенобетон. Такой бетон является хорошим звукоизолятором и еще меньше, чем обычный бетон, проводит тепло.